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1 BACKGROUND

In the study of the Earth's ionosphere, there are many prol)lems that

require a detailed knowledge of the electron distribution function. The

electrons are produced primarily by the photoionization of the neutral particles

in the atmosphere by the electromagnetic radiation from th. sun, and by

secondary impact ionization of the atmospheric constituent, by the primary

electrons. The electrons undergo various collisionil inte!actio|s with the

atmospheric particles and a steady-state distribution is rcached. In the auroral

atmosphere, ionization can also result from the precipitation of the high energy

(keV) electrons and protons. Once the electron distributiun function is deter-

mined, ionospheric properties of interest can then he calculated. With the

advent of rocket-borne and satellite electron spectrometer-, it is of interest

to pursue detailed theoretical studies of the photoelectron distribution as

well as of the electron density profile in the auroral ionosphere.

The Space Data Analysis Laboratory (SDAL) of Boston College was contracted

by the Ionospheric Dynamics Branch (PHI) of the Air Force ;eophysics Laboratory

(AFGL) to develop analytic and computer techniques for theoretical studies of

the ionospheric electron distribution function. This report is a summary of

the work performed under the auspices of SDAL durin-, the period covered by the

contract.
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2 PlIOTOl.I,ECTRON FLUX IN [IAR'I'PS 1ONOSPIIZiE AT IENIERGIiS NEAR TIHEi
PilOTh 1ON IZATION PEAKS

In this work Boltzmann-Fokker-Planck (BFP) theory is used to analyze the

(isotropic) photoelectron flux in the Earth's ionosphere at energies in the

vicinity of photoionization peaks, where the electron impact cross-sections

are slowly varying functions of energy.

2.1 GREEN'S FUNCTION SOLUTION FOR THE PHOTOELECTRON FLUX

In the steady-state, local approximation an equation for the isotropic part

of the electron distribution function is obtained by integrating the BFP equa-

tion over the angles in velocity space. The equation in the energy representa-

tion is

0 o)7- '(
1 i coil

where the terms on the right-hand side are given by Eqs. (7) through (15) of

Jasperse (1976) and in Jasperse (1975). At energies in the vicinity of photo-

ionization peaks the momentum transfer, excitation, and ionization cross-

sections are slowly varying functions of energy and, as a result, this equation

may be a pproximated by

S d - + cI () = ,(I) (2)
d IE

Wheret 11 is 17 times the isotropic part of the electron distribution function

divided by .I1/2, and where

n T I/2
1: 0 

n. 

( T 1!

(2 12 n :0 , F_
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Here, Q.mJ are the momentum transfer cross sections, Q k ic tile i mpic t
excitation cross sections for electronic tran;itiols, (i are the impact

ionization cross sections, 6 2m/M. where m is Ilh, clectron mass and M. isJ J J
the neutral particle mass, and In A is the Coulomb loga.'rilin. The neutral

particle densities are denoted by n with an appronriate suoscript denoting the

type and state of the neutral particle, the neutrall particle temperature by T

(in eV), and ne and T denote the analagous electron quantities. The angular

brackets denote an energy average. In deriving Eq. (2) rotational, vibrational,

fine structure, electron-ion, de-excitation and recombination processes were

found to be negligible. The production of secondary electrons 1 electron

impact ionization was regarded as a known source by using the continuous slowing-

down approximation and was included in S. In treating iml.ict excitation of the

electronic states, terms of the form

(2) k n. < (E+A j) 0jk(E+Aik) > I(1,+A. k )jk I l+ j ) k j.

where Lik are the threshold energies, were also neglected. It is actually

possible to solve Eq. (2) with these terms included using nathematic.al methods

more general than the ones presented in this paper. Thest terms produhce

approximately a 5'0 effect at energies in the vicinity of a peak produced only

by photoionization. These more general results will be ptblished elsewhere.

Eq. (2) can he solved if we are able to find the Grcen's functions which

satisfies

a d2 b _- + c] G(E,E') = 6(E-l') (3)dE 2  j

subject to appropriate boundary conditions. Here, (U-E') is the Dirac delta

function. The photoelectron flux, P(L), is then given by

-$(E) (4 ) k;) E J dE' G(E,E') S(i;') (4)

0



Using standard met hods we obtain

Vx) [+o,2(E.-I!') ]  iE

G (E ,E ' ) = a ( Q l Cj2 )

'x -I (E-E') , E- ' ,

where the boundary conditions that G + 0 as E - and that G have no rising

solution as E' 0, have been imposed. Here

(b 1/ 2

l L (b +4ac +

2a 2a
'= -/ 2 ---a (7)

2,1.1 Two Photoelectron Sources

The first photoelectron source we examine is that due to a continuously.

decrea.;ing source and an isolated unbroadened photoionization source.

S(1:) S exp(-IF/F ) + S1 S(E- 1 ) (8)

Using Fq. (4), the photoelectron flux is

'(+) = (4,i) J Sf(t) + (9)

1+0 20

exp (-,t )

(,(I) z/r2 IL) , lIE0

exp . 1 -

exp (I
exp [-o 1(i:-'E )] jj * W 1  .(11)

Abov about 260 km electron-neutral particle col lisions are 0 reasing rapidly

and electron-electron collisions dominate. This implies that b >.1ac and that

I /'l'eC ft , 2cY n e . Since the continous source decreases slowly

* /I; an approxim.ate solution is

Ih_



Y( (4)1 /e/e 2L (2 0 CXjI (-4 1;

exp [c(E-I'l)/Yen] , :!
+ Sl

At high altitudes we sce that the photoelectro f x has a cusp at widt a line

'IIshape that is asymmetric about E 1  The forward and backward half widths at the

I/e point are

FHW = T , (13)

BHIWI = Y n /2c u n /n(O) , (1.1)

where n(O) is the atomic oxygen density. At low altitudes electron-neutral

particle collisions dominate electron-electron collisions ;ind b, «4ac. It

follows that a1- ¢, = (c/a) 1/2 a > 1/1' and

1  20 (ac 112 cc p-E o

+ -u exp(-a]E-E I) (15)

The photoelectron flux again has a cust at 1: and the line shape is symmetric

with a half width given by (a/c) 1/2.

The second photoelectron source we examine is that due to a continuously

decreasing source and the isolated photoionization Source that is broadened.

S(F) = S0 exp(-E/E0 ) + S1 r(E) , (16)

where r(E) is a rectangular function of height 1/2' and of width 21' centered

about E The photoelectron flux is given by E(q. (9) with fl replaced hy fit

where



flj(E+ 2
2a2 ,

1": F I. E 1: 1+ 1"

s h(xI)exp I-CL (E-El) E E+r<E (17)

Note that 0 has a rounded top and a continuous first derivative in the

vicinitv of L Note also it is asymmetric at high altitudes (al5a2) and sym-

metric at low altitudes At altitudes above 200 km the forward half

1 i nil (V

I-exp (-l I/T
+ 2 (Y/T 0 1(i8)

For simplicity we have neglected the shift in the location of the peak. For 'I

comparable to T IPlW is approximately T +F - T In 2. At low altitudes the half

width is

-In I-cxi-1'(c/a) /2)] (19)

For large P(c/a)I / comparud to 1, IIW is approximately given by (I-in 2)
(a/c)1/2 +

.2 RI 1S II'S

Usitng the modelI iotiosphere same as that given in Jasperse (1977), and using

the lacchia (1977) model for neutral atmosphere, we have calculated the theoreti-

cal photoelectron flux in the vicinity of the 27.2 cV peak at three altitudes.

Results of these t ilculatiotis are given in Jasperse and Smith (1978). The

27.2 eV peak was chosen as it is isolated and is produced only by photoionization

6



In comparing these calculations to the expeirimentl vv.sults of I)ocritig et al

(1976), we see that the observed asymmetry and shi ft of' the phluiot i -,It ionl

peak as the altitude increases is qualitatively exp lained by thc BIIT he.r.
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31 COLLI SI ON OI'IiA'I'OR STUDIY

We have completed ;I Syst emat tic St tidy OF cUI I I SOl.A I opt i'at Or ha sed o1n

the ''velocity-ratio'' expansion technique introduced or iginalIly by Schiti icr and

Wilhelm'. This technique has been developed extensively by S~gur and

Lerouvillois-Gaillard.2, and is applicable to all types of collisional processes

involving light and heavy particles. It is particularly convenient when con-

sidering the impact of electrons with atoms, molecules, or ions. This calcu-

lationa] procedure considers systematically the dominant effects of the number

density, temperatuire, drift, velocity-correlation tensor (or stress tensor) of

the heavier specics on the collisional. operators of the transport equation for

the distribution function of the lighter species.

III out- StudyN we have considered the effects of ionization, dissociation,

e~itat it'l, kic ext itat ion, recombinat ion, and Coulomb forces onl the collisional

operator- . Fhe following is a summary of the specific results of our investi-

,:t I ill.

.3.1 CO)LLISION OP1IRATOPS VIA SCATTERING PROBABILITIES

lit coinsideriiii, collisions b~etween electrons and neutral species, we found

it coiveii ct to kip loy thle "scattering probabilIity" formulation of the

Bolt :mann- like opcrator. This idea was discussed by Waldmann 3 and used

extensiv1 tel D we, lope'* and S~gnir and Lerouvillois-Gaillard2 . It allows us

to treat ;ill Bolt.imann-I ike collision operators from aI single unified viewpoint.

W~e ha Ve Used thi spr ocedure' to consider the ineWlastic scattering between

electrons and neniral spec ies and electron-neutral impact ioni:ation processes.

3. 1.1 fi elastic A'cvtteri ng Between E lectrons and Neutral Species

W~e have consideredl the ine last ic scattering of neutral particles (atoms)

and MOleUCLesjI with enoltiding electrons. The atoms or molecules are allowed

to uniderlgo exci tat ioll and de-exc itat i of proces-ses. Princ ipl e of detail]ed

ha lamie .- is usd to) obtain t he finial rorut of the cotllisionl operator. Thle d is-

ti'jbmi ion tune tions, of the niettra I part i cle,, are a.sl iIL'd to fie givyen but the ir

functionial forms , in he quite arbitrary.

8



i) We have derived the collisional operator for excitation proccsse;
to second-order (in vclocity-ratio) for an i sotroLic neutral
distribution function. This result is the i.encralizat ion of the
classical expression developed by lolstein'. In the origin:al
expression of Holstein, the collision operator depends only on the
number density of the colliding neutral species and the differential
cross section. In our second-order calculation, the neutral tcmpr a-
ture is also included in the final expression.

We have written the operator in an expanded form by writirg the.
electron distribution function in spherical harmonies of the angles
of the (electron) velocity vector. The first two moments of the
operator have been obtained explicitly. They correspond to the
isotropic part and the first anisotropic contribution of the colli-
sion operator. As a check, we have shown that in the limit of zero
excitation energy, the isotropic part of the collision operator
reduces to the classical Fokker-Planck form of the elastic collision

operator.6 Thus, the elastic collisional contribution is a second-
order effect in terms of the ratio of the velocities of the colliding
neutral particle and electron. It is not contained in the original
Holstein expression.

ii) We have derived the corresponding collision operator to second
order for de-excitation processes for an isotropic neutral distribu-
tion function. This is accomplished by applying the "principle of
detailed balance" to the excitation and de-excitation processes.
By expanding both the excitation and de-excitation operators in
Taylor series in terms of the excitation energy and summing the
resulting expressions, we obtain a generalized version of the
Ginshurg-Gurevich-Allis 7 form of the isotropic part of thc collision
operator. In this calculation, we have asstmed quasi-equilibrium
of the neutral species and applied the Sahia equation. Thus the
effect of the neutral temperature is introduced in the collision
operator through both the second-order velocity-correlation func-
tions of the neutral species via the velocity-ratio expansion
technique and also through the expansion of the Saha expression.

Our expression reduces to the classical Fokker-Planck form if only
the terms to zeroth-order in velocity-ratio and second-order in
excitation-energy are retained. [We note that this expression still
contains the neutral temperature because of the Saha equation]. To
second order in velocity-ratio, however, the structure of this
collision operator is more complicated than the original Fokker-
Planck form. We must be careful of not double-sumning the elastic
terms. Now the operator contains both first order and higher-

order terms in excitation energy, as well as third and fourth order
derivatives of the electron distribution function.

iii) We have derived the collision operator to first order (in velocity-
ratio) for inelastic impact for an anisotropic neutral distribution
function. This expression contains both the number-density and
drift-velocity of the neutral species. We have expanded this
operator in spherical harmonics of the angles of the (elect ron)



Veloc,'ity vvctor. Since the slheri'cal harmonic,; ic aeno Ionger
cigenil't ins of tIhe collision operator, we find that the isot ropic
portion of the collision operator depends on the anisotropic part
of tile electron distribution function and vice versa.

3.1.2 Electron-Neutral Impact lionization

We have considered the collision process of electrons and neutrals such

that the neutrals are singly ionized by emitting secondary electrons. For

simplicity, we have assumed that the neutral distribution function is isotropic.

Thus, we shall neglect the effect of neutral drift on impact ionization.

The collision operator is found to depend on a double differential cross

section as discussed, e.g., in Mott and Massey 8 . To second order (in velocity-

ratio), our expres;ion depends on the number density, and temperature of the

neutral species. 'e have expanded the operator in spherical harmonics of the

neutral species. ,'e have expanded the operator in spherical harmonics of the

(electron) velocit, vector. The resulting expressions depend on the partial

range integrals of the double differential cross section. Because of the

impact and second;irv electrons are indistinguishable after the collisional

process, a factor )f two (2) is introduced in some of the partial-range

integra Is.

To zeroth orer (in velocity-ratio), the isotropic portion and the first A

anisotropic moment of this collision operator reduce to the expressions

derived previouslI by Jasperse. 9

3.1.7 Collision (cnerator for Dissociative Recombination

We are primailly interested in the recombinative processes of electrons

with molecular ion:s such that the molecules are dissociated into two atoms

(or molecules) upon collision. The inverse of such a process does not involve

collisions with tlic electrons and this portion of the collision operator is

independent of th( electron distribution function. It is essentially a "source

term". Thus, it x.ill be convenient to consider the collision operator in two

distinct parts: (ne involving the forward process which is a linear function

of the electron distribution function and the other a source term.

To consider the part of the collision operator involving the forward

recombinative procss of electrons with molecular ions, we expand the differen-

t ial cross scetion in terms of' the 'ion-electron velocit-ratio". The result

1 0



is a simple expansion of the collision operator for recombinative vro*cL"sses.

The effects of the number density, drift, and temperature , f the ion specics

come in naturally. To the zeroth order of this expansion, our result agrees

with the classical expression. (See e.g., Jaspersc'.)

3.1.4 Effects of Ion Drift on the Fokker-Planck Operator 'or Electron-
Ion Collisions

It is known that the Fokker-Planck form of the collisi,.n operator for

charged particles can be deduced from the Boltzmann equatin 10 , Liouville

Theorem or Markov processes 12 . In considering electron-io, collisions and the

collision operator, it has been customary to assume a Maxw, llian distribution

for the ions. It is quite straightforward to generalize tic expressions to

arbitrary ion distributions using the velocity-ratio expanion technique. We

have systematically derived the expanded operator to include the effects of

the ion-drift and ion-stress-tensor. We have again splitt,,d the resulting

operator into an isotropic part and the first order anisot'opic moment. Our

results reduce to the classical expression in the limit of zero ion drift and

isotropic ion distribution.

3.2 INTEGRATION OF THE ELECTRON TRANSPORT EQUATION IN APPIEFD ELECTRIC
AND MAGNETIC FIELDS

We have extended the previous calculations9b of the (.lectron distribution

function in the collisional region of the ionosphere to iui.lude the effects of

the local electric and magnetic fields. In a local approyimation, we shall

assume that the E,B-fields are given. We found that the integration of the

electron transport equation can be accomplished convenient ly if we project

the electron distribution function in three (3) special directions:

i) the direction of the electric field,

ii) the direction of the magnetic field, and

iii) a direction normal to both the electric and magjnetic field.

We found that if, for the isotropic portion of the c Ilision operator, we

i) neglect recombination and attachment,

ii) use the Ginsburg-Gurevich-Allis form of the intlastic collision
operator, or expand the inelastic operator [to zero order of the
velocity ratio] in Taylor series in terms of the excitation energy,

11



iii) linearize the electron-electron collision term,

iv) neglect the neutral and ion drifts,

v) approximate electron-neutral impact ionization as an excitation
process and expand in Taylor series in terms of the excitation
energy,

vi) consider photoionization, and the secondary electron production
due to electron-neutral impact (estimated by the continuous slowing
down approximation) as known sources, and use a combined collision
frequency for the anisotropic part of the collision operator, the
electron transport equation can be integrated in terms of simple

kuadratures. Interestingly, these quadratures can be integrated
explicitly for simple but realistic variations of the cross
sections as a function of the electron energy.

We note that the above integration is accomplished by simultaneously

considering the isotropic and anisotropic portions of the transport equation

for the electrons.

3 .3 INTEGRATION OF THE ELECTRON TRANSPORT EQUATION IN THE ABSENCE OF AN
ELECTRIC FIELD

In the alsence of the elhctric field, we can integrate, in local approxi-

mation, the electron transport equation perturbatively. If we use the same

type of approximations suiggested in Section 2 for the collision operators,

the isotropic part of the electron transport equation can be integrated

explicit iv. This expression is probably only valid in the electron energy

range 2_'( cA, hiit should he quite accurate for the photoionization peaks regime

and higher electron energy ranges.

The anisotropic part of the electron transport equation in terms of a

single combined collision frequency can also be integrated in the presence of

an applied magnetic field.

In an earlier study, .asperse and Smith9 c calculated the photoelectron

flux in the vicinity of plhotoionization peaks in terms of a local Green's

function solution for the isotropic part of the electron distribution function.

We have applied the same idea to calculate the anisotropic effects in the

presence of an applied magnetic field near photoionization peaks.

' .4 SI*MARY

We h;ve compl( I oeI a ;ystenmat ic study of the col Ii si on operators that appear

in the c.lectron tr.,sport equation using the velocity-ratio expansion technique.

12
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Processes involving inelastic impact, excitation and de-ex, itation, ionization,

dissociating, recombination and Coulomb collisions have he,.n considered. We

believe this research is the most comprehensive and sVsteII:Itic investigation

of the collision operators for the scattering of light par: icles by heavy

particles at the present time.

Upon making some plausible approximations we are able to interate the

electron transport equation in the presence o" electric ani magnetic fields in

the local approximation.

We are in the process of preparing two separate manuscripts reporting

these research findings.
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4 EI~l:CTROSTATIC PLASM4A I NSTABIL TI|S OF Ei-RE(;ION PIJOTOLI1,CTRON

D)IS TRI BIlIONS

4 .1 INTROIHTLON

Ali ionized re. i on exists in the lharth's upper atmosphere, wh ich exteids

from about sixty kilometers above the Earth's surface to several thousand

kilometers and beyond. At low latitudes during day-light hours, this ionized

region results primarily from the photoionization of the neutral atmospheric

constituents by ehctromagnetic radiation from the sun. In the study of this

ionized region there are many problems of interest which require a detailed

knowledge of the electron energy distribution. Once the distribution function

is known, various important physical quantities, such as the volume emission

rates for the air ,low radiation, electron heating rates, and electron

temperature profili's, can be calculated.

Theoretically. the electron distribution function can be determined by

invoking appropriale energy balance between the photoelectron production and

the losses due to \arioius inelastic processes. Several authors have investi-

gated this problem. Most recently, Jaspersel has developed a complete kinetic

theory, using the Holtzmann-Fokker-Planck method, in the sense that it deter-

mines the electron energy distribution and the ion concentrations in the lower

ionosphere (1i region) self-consistently, once the boundary conditions and the

model ionosphere ai'e specified. The low energy spectrum of the isotropic part

of the d istributiot function is Maxwellian with temperatures a few hundredth

of an cV. In the uprathermal part of the spectrum, most interesting feature

occurs between 2 aid 4 eV energy. In this energy range, the distribution

function has a minimum at about 2.3 eV (Fig. 1). This is explained theoreti-

cally, since the c oss section for the electron-impact excitation of vibration-

al states of N., ha; a maximum at 2.3 eV. Beyond 2.3 eV, the photoelectron

flux rises sharply to a maximum at about 4 eV, as the excitation cross section

decreases sharply. Beyond this energy the flux falls off as the cross section

for the excitation of metastable states of atomic oxygen increases. The

theorei ical calcul itions (Fig. 1) show that this minimum in the spectrum is

more nd more pron unced at or below altitudes of 130 ki. Above 130 kin, the

vaIl vy start s to I, fi I I led up, the peak - to-vail ey rat i o decreases, until at

or above 210 kin tl ,, st ructlire disappears completely. This disappearance can

be attrilbt, d to tIle deplet ion of N,) as wel I as to the gradual smoothing process

arising from elect ron-electron col lisions as the altitude increases.

14



Measurements of the electron energy distribution by Doerin et a12 and, most

recently, by McMahon and Heroux 3, who studied specifically the 2-5 cV energy

range with improved energy resolution of the appara*tus, art in good agreement

with the theoretical calculations of Jasperse at and abov. 170 kim. Be low

170 kin, the calculated values of the peak-to-valley ratios by .Jasperse is

somewhat larger than the observed values. The observation- are in most striking

disagreement with the theory below 130 kin, where they show plateaus in the

distribution functions in the 2-4 eV energy range.

This discrepancy between theory and observations suggtsts that in the low

altitude regions (100-170 kin) collisional processes along (annot account for

the observed photoelectron distributions. It is well-knowni that a homogeneous

plasma in a magnetic field with isotropic distribution funktions, can he

unstable if a population of high energy particles is also 1present. This is

precisely the situation in the lower ionosphere, and it is expected that the

plasma instability will produce the anomalous diffusion in the velocity space

through wave-particle interaction, which in turn will flatten the distribution

functions in the 2-4 eV energy range. With this in mind, ".e consider here

excitation of electrostatic instabilities in the ionospheric collisional plasma

by the suprathermal electrons near the 4-eV maximum (Fig. 1). In particular,

we consider the two most important instabilities, namely, the upper hybrid

instability and the electron cyclotron instability; and di:,cuss the linear

growth rates and the wave spectra as functions of altitude Bloomhergl has

investigated the upper hybrid instability using the theortl ical electron dis-

tribution function of lDalgarno et a15. His calculations show that the instability

is inoperative at or below 160 km due to large collisional damping rate. Since

Jasperse1 gives more accurate 3 theoretical electron distritution functions and

since we now have more accurate data for determining the relevant collision

frequencies, it is worthwhile to reexamine the upper hybrid isntabilitv.

In Sec. 4.2, we present the mathematical formulation leading to the dis-

persion relation. In Sec. 4.3, we solve the dispersion relation and determine

the various growth rates, and the spectrum of the unstabl' waves.

4.2 MATIFMATICAL FORMULATION

Since we intend to study the instabilities driven by the suprathermal

electrons near 4-eV maximum (Fig. 1), we assume that the ,quilihritim electron



lllll1 i) iF o'i i l I/s131 y t )wo parts: a Maxwe I I i an (tilt, nial ) popula t ion,

;iad a i iI irat hieirh a Ik Wlc wth iiionot oi i cal y decreasinp ene rgy profile peaked at

4 eV. This is indicatud by dotted lines in Figure 1. In doing so, we have

ignored the high energy photojonization peaks in the tail of the actual elcetron

distribution function. We further assume that the positive ions form a

neutralizing background of constant density. This is justified since we

consider waves with frequencies Uw;pe where w pe is the electron plasma fre-

quency. Then the ;mall amplitude perturbation of the electrons is governed by

the following equations:

Df. 3f. 3F .
+ v-Vf. - -- (v B ) j e E • 01 = C(f.) (1)

mc 0 3v - av

V-1f = -4.e X ff d 3 v (2)Jii

where B is t ie tt l t' -th . Ilinet ic fichli, whic h is a sullnied to b ti niforn,

i'r ,v ,t is the perturbed electron distribution function, F oj(V) is the

equ iir imUii ci ect roll dis tribut ion funct ion isotropic in) vel oci ty space, and Li

is tile electric t'it 'ld associated with the density perturbation. The index .

labels the two kin,( of electron population.

The collision ter'l, C(f. ), in Eq. (1) represents the electron-electron,

LcctrlI-l-ion and the cI, ct ron- neutral collisions,. Explicit forms of these

collision terms cal. be found i3 Ref. (w. 1I3 a weakly ionized gas such as the

low alIt ituide otio.phcrc of onur interest, the frequcnci c's of clectron-electron

and electron-ion cll i;ioils ire small in comparison with the neutral and we

iiced consider onl. the electron-neuitral col lisions. Furthermore, inelastic

t'lcti ron-li -II ral k i isions are much les s 'reqiient than the elastic ones,

Iloweve r , tie corpl xi ty of the exact elasit c collision term makes the analysis

intractable. To ;)v()id tlis, we use a B-(;-K type7

C(f.) = -v.f. + V (n./n oj) F .(v) (3)3 .I J .3 03 0

where

=~ r f.id 3 v

is the perturbed eIcCtron density, noj is the equilibrium density, and v. is
03 J

the suim of the frqquenc ics of' clastic collisions between the i type electrons

ild the variot'; nu itr;il particitci , (N,, 0,, 0, etc.) present in the ionosphere.
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This particular choice of the collision term, which conserves only the number

of particles, is adequate to describe the electron-iieutral collisions.

We notice that Eq. (1) can be written as

df. aF n.
__L+ v.f. e E • + v. ( -) F (4)dt 3 m v j 0. oj

where d/dt is the convective derivative taken along the unperturbed electron

orbit in the magnetic field B . Integrating lIq. (4) with respect to t we

obtain

ft [ ,+e)fj f dr" vj r-,t- ) • __J_ v. 3Fo (V" 5

_ .v . noj

where r'(t') and v'(t') are the unperturbed electron orbits. Since the

collision frequency is much less than the cyclotron frequency, the electron

orbits in lowest order are given by

x-= vl v-

x-x -I sinp + -- sin(-St)

V. VL
y -y = -- cos4 - - cos(- lT)

Z -Z = - Vi T

vx = v,_ cos(4 - 2)

v =v sin(O-Q2T)

V'v

where T = t-t', and we have chosen a cylindrical coordinate system in the

velocity space with the z-axis along Bo, so that v = (v'cos,v'sin4,v,,). The

orbits are taken to satisfy r'(t'=t) = r,v'(t'=t) = v, and SI = eB /me is the

electron cyclotron frequency.

We use E = -V., where D is the electrostatic potential, and choose

perturbations of the form f - f exp(ik.v-iwt). Then
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Wi ,' k x cos(p-[ i + ) sin(I-Sri) (

f. (~ wV.d . . . ...

;)vI

+ "!-n (kw) F (V) exp ik • (r'-i) + i(+iv) T (6)
no .i n 03

where we have used F (V') = F o(v). Integrating Eq. (6) over velocity space
we can find n.(kui) in terms of 4(k,). Substituting for r'-r and using

azimuthal symmetry of the problem we can readily perform the 4-integration in

velocity space and then the T-integration.8 The result can he expressed as

N.
n.(k,wu) = j 1(kw) ()II '

where

Ni(' 'k , ) f "dveldv n'--€-
m '- d+iV, kIvnS}

nkv k (+) (8)

-I nd

k v2-n. v .

1).(k k ,5n(v---v1L i n -L W+iv. - k v1l-nQ (9)
"n n = - -  I

Substituting n. ito the Poisson equation (2), we obtain the dispersion relation.1

I )
where -- k 2 + K

4.3 S'TABI LITY AN.,IYS I S

4.3.1 lResonant Fpc Inst iility

ik, rc we look for instai i Iit- that arise due to wave-particle resonant

interact i on,;. Th. wav,; arc ipported Ib the ,Mixwel iain electrons, while the,"
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are driven unstable by the suprathermal elect rtns near tilt It cV I)CA., which

are in resonance with the waves. The resonance condition is w - kl v= n1,o

being the real part of the frequency. We first consider the properties of the

waves by solving the dispersion relation without the suprathermal electron

term, i.e., we solve the equation

I 4i__e =m 

(

k+ c = 2(111
where the subscript m refers to Maxwellian electrons. For Maxwellian electrons

with density n and temperature T., the integrations in N and ) can b carried0 C'

out in a straightforward manner and the results are

en m 1/2 w iv 1
m

-m 2(h) I(b (12)

e Ik nI

Here Z(pn) is the plasma dispersion function, I. is the modified Bessel functionn n ) [ k\ (T / )1/22

of first kind, P n (w+iv [ , b = k T/2m). We shall

consider waves for whichjp n>>l for all n. This enables us to ignore then

Landau damping. Using the asymptotic expansion for the Z function9 and keeping

the significant leading terms, we get

--.+_ (14)Nm  - L ( W i, e ( +iv ) 2 :

Dmm

iv__ 2n Q 21e-

-1 W- + i E 2 _2 21(5
InW n=lI (w+iv) -) n QJ

We consider waves with k, /k I«l, and since vm -ww pe' Eq. (11), with the aid

of Eqs. (14) and (15),

2 2 h2kk k e - 2o.nu (,+I\, ) I

W it hb k___

W(U1+iv ) 7--C I ..- (1 (16)
,i k- o kh ,, (,w+ i v - n J



wher w =(4nn2/m 1/2m
where 0Pe Ono m) is the electron plasma frecucncy. Expanding in m/W-I

and keeping only the leading terms, we can write Eq. (16) in the form

c(k ,klw )  + I

.L I .CPC 2n-ipe u I 0 (17)

k-b(w2_2 -n

where

2e k -bw I c k 0 2 n w pe In
(k_ I (18)

o kb n=l - -wn22

If we write W ) + iw. , where aj. < w in consistency with v << w, then wr l r m r

is determined from

S(kk,, w ) 0 (19)

and w. is given by
1

2 -b 4 42 2
(vm/.) k e pe4n n

. - + 2 2 (20)O)=W k b ( _2P

In deriving Eq. (20), which gives the collisional damping of the modes, we

have made use of the dispersion relation (19).

The roots of the dispersion relation in the limiting case k ,=0 was first

discussed by Bernstein. 10  They depend on the values of the parameters: b and

12 1w . In the cold plasma limit 1l3-, and, furthermore, over the ionospheric
PC 2

region of our interest (100-170 km) , P1/2 -<1. Then, the lowest frequency

W 2 )
W2 - 2 PC Wp 3p2 (21)

pc - " PC

'he next hi ,er fr, quency mode is the so-called upper hybrid mode:

W1 I + 112 (22)
H PC0



The higher frequciicy modcs (jiust a)ovv or just beL ow 1Che Cyclottol hairmlonic

depending on the value of w /4) are given by (n-3,4 ......

PCwo nfl[ - O(bnl) ]  2 (n2 -1 )j

PC
-- n [1 + (b -l )] 2 n2 l 2 (23)

These so-called Bernstein modes 10 are separated by frequeny intervals where
2

there is no propagation, i.e., k. , 0. In Eqs. (21) - (23) there are small

corrections of the order of kI/k < 1, which have been omitted for the sake

of convenience. The corresponding damping rates are found to he

L) b

3 PC4v ( 2 (24)
(W pe-3s 2

-- -V 
(25)~2

m 22w,

V(2 +2 ) (26)

respective!ty for the modes w2, 
0 H' and n '

In order to find the destablizing effect of the suprathermal electrons

(denoted by a subscript h), we now consider the complete dispersion relation:

[L.H.S. of Eq. (17)) + (41e/k )(Nh/D) 0 (27)

where Nh and Dh are to be calculated from Eqs. (8) and (9) respectively. We

write w = w r + i. + iy, where w. is the collisional damping rate given by

Eq. (20), and y is the growth rate. Since JFoh dv = noh -n0 , we can assume

the the contribution of the suprathermal electrons to the dielectric response

function and, hence, the growth rate is small. Then, as before, we obtain

c(kLkl, r) = 0

I it r



which dilcrmine:; a .nd

4" enl i (Nh / [1 I(28)

22

r

where c(kL ,kI,w) is the same as in Eq. (18). In doing so we have neglected

the small contribution to ,or from Re(Nh/Dh).

We first recognize that the collisions of the suprathermal electrons with

the neutral species will somewhat detune their resonance with the waves. As

a result, -y will be less than its collisionless value. However, the reduction

is found to be negligibly small, e.g., y = y 0l - O(Vh/Q)], where Vh/ /Q << 1,

-Y being the collisionless growth rate. This can be easily verified by

carrying out the c.,lculation with a simple functional form for Foh(v), e.g.,
2 oh

Fh = n/4v o) 6 v-vo), v being the speed corresponding to the peak energy.

So, the dominant d;uping is that due to the collisions of the Maxwellianr

electrons and is given by Eqs. (24) - (20). For the sake of convenience, we

shall omit vh from Nh and 1h' Then 1) becomes unity, and since F oh is isotropic

in velocity space Nh becomes

- 2 d dob (29)

)
where V v_ 4 vii Substituting this into Lii. (28) and using the formula

l 1
1' i 6 (w-k vl -nsz)W- k vI -no m -- 1 v.\ n

where the symbol P denotes the Cauchy principal value, we finally get

IILI

oh orrn (30)

r ki

IHere F1oi i /n ohl so tha fi il dv -I



We change oter to t lie ci(,c'gy rCl)rcsUtaiit tili sig h I -) )1/2 . ) -oil 1: /1
Foh(v), so that the normalization condition if 41f ;oh(:) di =f Fo(v) dv = 1.

Here E= my 2/2 is the energy variable. In the energy reprtsentation, Eq. (30)

becomes

42 2hlo  112/G
2312 f K --EL\'/2

Y r E L d l JIK() (31)

r

where E = 2 is the peak energy of the suprathermal eltctrons, Ki k
i0/ is 2t

. v k /f, and En --- [e r/2-n)/Ku } 
. Integrating by paits and using a Bessel

K L vo/, an n Eo[ r S-)K)
function identity we rewrite Eq. (31) in the more conveniett form

7T2(nA/nW2 W E 112 L2(noh/ o  ,Wpeo °rd'o

/n ( CL) I. -I' _3- (32)
n3 ] nf r E 1/2 ohil 11+1-, -I2

r

The behavior of the functions in the integrand of Eq. (32) is shown in Figure

2. It is clear that to obtain large contribution to the integral we must choose

a value of F 1siallcr than F( . This sets a lower limit to K [ or ;i given

aPC/ 2, which depends on tile altitude, I, may he such that r/ -In is small est

for n=p (say). The corresponding lower limit for Kiii is fi eL by reliiring

that 3 p E . Next, we note that 2 2 is an oscililat itg function of
p) 0 pl+ p-I

the argument with progressively decreasing ampl i toide. Sinl, e the maximunn

contribution of Goil comes from the vicinity of E--l0 ;ind siice G;tih is strongl.

peaked at I=F I. positive value of tile integral (muaningt nstability) will be, 11212

obtained whenever K (l-1 /: 1l/2 falls within thu positive doma in of .3 -
I 0 p- 1

In other words, the regions of unstable K. will a IternIate .i th those of stable

K!. The largest positive value of the integral will, of c rurse, be obtained

when K±.(-1 /[ ) 1/2 is equal to the value ait which the fir~t maximum of J'2  L(1,: cp+ -

p- occurs. Ilowever, for the same values of w /S? and K., which en sure tile

positiveness of the n=p term, there will be some or all no p for which the value
2 12

of Kt(l-I3n/Eo) may be such that Jn "i is nelgative. I'hese terms il the sum
nl ( 11+1 n-I

may cancel tile positive contribution from the n= P term and thbus eliminate tie

instability. Ilowever, if we choose K 1 in such a way that Io, but 1 1: o r

all np , then tile negative contribution from the nip terms will be comparatively

small and the doini nalnt cont ribution to Y will aris e fr1om the n--1p tel-n in tile
siill. lih is s l anii ipel, i" I i ii to ki '. t i V llm ' I\ uiK is th-tcr ililit I b)

tile width of tOl( F . Finally, we obse rV., thrl the uppri .il v b)rid miode has lihe

largest growti iate in compari son witlh the Reiritl in (eyc ti-oon harmonic) modes.
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This is so because , /, , is Iarge near the cyclotron harmonics (--h [ n2 ,3,4

.). Hence, we shall concentate on the upper hybrid instability. In this case,

Wr = W= H S1 +W 2) , (22-)

and

4 1 /2
Io2 noh~fWe 0 1 AdE 2 ?

? 5 - T n) n =1 2 G oh (E )  (J n+l - 1 ) (32-)

2 1 2
where thc arguments of and J- are the same as that of J in Eq. (31).

In order to obtain values of y we now consider the parameters of our

interest. In the lower ionosphere (100-170 km), no = (0.6-3.0) x 105 cm
-3

B = 0.35G; then, w /U 2.24 5.0. Numerical values of y have been obtained
0 pe

using the electron energy distributions of Jasperse1 . The collision frequencies,

\, have been calculated using the recent cross section data, and the model

atmosphere of Jacchia 1 E. lectron temperatures were taken from Jaspersel calcu-

lations. The collisional damping rates are given by Eq. (25). Results of these

calculations are summarized in Table 1. The maximum value of the growth rate,

Ti' corresponds to the maximum value of the sum appearing in Eq. (322). We

notice that -( increases with altitude. This is mainly due to the fact that

both ', l/Ul and n o/n incr'easC tith altitude I see Eq. (32')}. The integral in

Eq. (32') decreases with altitude due to broadening of the distribution function,

but the decrement is very small over the altitude regions of our interest. We

have verified it further bv evaluating the integrals with = 6(E-Eo)/4r and

then comparing these with the actual numerical values. The collision frequency

and, hence, the dai iping rate w. decreases with altitude. This is due to

tion of neutral species. At higher altitudes, however, electron-electron and

electron-ion collisions, not considered in this work, become increasingly

important.

We Furt her not ice that the valtic of k _vo/ for which the growth rate is
2 ? ) ')

maximum increases with altitude. So, b k're/m. (kv/:..)T /2E ) increases
1 1 ~o e 0with altitude and becomes finite. Consequently, the growth rates in Table 1,

which arc obtained for b'l, have to be modified. From the dispersion relation

(19) wk. tinid that the finite-h-odificd upper hybrid mode has a frequency

larger than its previotis v;alue. For example, when w li 4.3 (140 kin) b1. 0

and then the frequency i s i "11 5..4U whereas, for V -I, w 4.14, (see Ref. 10 for
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the solutions of the dispersi ot relation when b is finite). This means that

instead of n=4, n=5 term will contribute most to the integral in Eq. (32').

The growth rate will be smaller than the one reported in Table 1, but the

reduction is small. At high altitudes electron-electron collisions, not con-

sidered in this work, will be more effective in eliminating the instability.

Finally, at altitudes below 125 km the collisional dawping rat, exceeds

the maximum growth rate of the upper hybrid mode, and so the instab ility cannot

be excited. As we show in the next section, below 121 km a different type of

instability, namely, the electrostatic electron cyclotron instability, can be

excited.

4.3.2 Electron Cyclotron Instability

In the previous section we considered unstable waves tith small but

finite k 1. Here we show that under certain conditions waves propagating

strictly across the magnetic field (k11=O) can also be drivn unstable by the
suprathermal electrons. This instability, which is of non resonant type, is

excited at the electron cyclotron harmonics. In order to calculate N and Dh

for this case, we change over to the spherical coordinates in the velocity

space and after some straightforward algebra (see Appendix, obtain

N = T dv F oh(v) (+ivh) (Jih - lJ (33)

n=-0 11o I

k +cn lvi+ oh -- .  vl \)jifO .L

Dh = +M i- kn i dv v o Fo ) J2 (2k V/.,) (31)
noh _o i o

In deriving Eqs. (33) and (34) we have put K -0. [he complcte dispcr;ion

relation is then

2 2
2n wP (w+iv m) an  41e

n=l w[(w+iVm ) - n2 21 2 (h))

where Nh and Dh are given by Eqs. (33) and (34), a - (I / c vIxp(-h) b sce
Ii

Eq. (16)1, and we have denoted k by k. . Let us first analze thu dispersion

relation in the limit v =0. We write w nS2(l+x), where n..' and 1 (since

Soh/no-. 1). Then, Eq. (35) becomes



2a w W GQ1 + nn + - - = 0 ( 3 )

Here a n oh/n ° and the quantity I is defined as

I(n) =4iv f dv F ol(v) J 2n(2kLv/Q) ,n>2 ,(37)

where Fh F h/ni, and mvo/2 = E is the peak energy of the suprathermal
oi oloi, 0 0

electrons. We have neglected terms of the order of (v h/n)o or smaller

compared to the others. one of the roots of the algebraic equation (36) is

n i2 ( n - - 1 )-2

2 _ 4 9 2 ( 3 8

-V1 pe_

64a n to/1p1n

We notice from Eq. (38) that c can have a positive imaginary part (meaning

instahilit)') when 1<0,

K(39)
,2"

anid

,~ ~ ~ -, -... - a(0

1 i PC (40)

(n-i 2 in(2hich the

The coudi t ion (40) dvtV' emi)cs the range of the values of u,2 in which the9 pe
n-th cyclotron hrarmon ic can he tnnstable. The aIgest value of ImX iss obtained

' ..n* - 1 (41)
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Then, X becomes

. 0

The second term within the parenthesis in Eq. (42) represents the finite-)

stabilizing effect. In the presence of collisions, the solution of the complete

dispersion relation (35) is

(n-+l)v m

W = nfl +i y- ]2 n>2 (43)4n2

where y = nQ2(Imx) and the additional term is the col lisiontl damping rate.

The maximum value of the collisionless growth rate, denoted by Y, is

ma km

Y maxfl 11 - km (44)

Here k is the value of kv o/ for which the maximum value of III is obtained.
M 0OFinally, the condition for exciting the electron cyclotron instability in the

presence of electron-neutral collisions is

(n l) (45)
4n-

Although accurate determination of I requires numerical integration, it

is possible to obtain an analytic expression for I using a suitable F'oh that

closely represents the actual distribution function. Such an analysis is

instructive, if not so accurate. We first change over to the energy representa-

tion so that Eq. (37) becomes

I = 4TE f dE G ( [r2 jkov 1o - " Gohil(E) nL _ - ((. )

0 E nJ0

We then choose

Goi)= (E) exp(-aL/Eo) , (47)
ohl 41lE P(1+ci) E 0

0) 0
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which satisfies the required normalisation condition: 47rf Gh(E) = 1.
0

It can be easily vwrified that such a distribution is peaked at 1=3E0, and

the quantity a is a measure of the width of the distribution, e.g., a=4(1'. 0 ./A)

where A is the characteristic half-width of the distribution. Our model

distribution closely resembles the ones that are found in the low altitude

regions by theoretical calculation. 1 Substituting this G o(E) into Eq. (46)

we findtY

exp (-k2v/a? 2) M(n+l-a;2n+l;k2v /i 2) (48)

where M is the confluent hypergeometric function. From the properties of

the function N we find that I will be negative when (n41) < 0, provided

(k /V2 /w.) 1. 1 'his condition tells us that for the n-th cyclotron harmonic
to be un:;table the width of the electron distribution has to be such that

(A/21 } (n+l) -  i.e., for large n, the distribution function has to he 

very narrow; otherwise, the mode will be stable. We have shown earlier [Eq. '

(41)] that the value of unstable n is determined by the value of w pe/I. Since

,P /U increases with altitude, requiring larger n values for the instabilitypc

to set in, and since the widths of the calculated distribution functions also

increase with altitude (see Fig. 1), we can conclude that the cyclotron

instability will Itc operative only in the low altitude regions. The approxi-

mate vidth of the instable spectrum is given by

2 k1 v
if(n + -) /Aot-2) . -1- r n- (n + 4) /(4o,-2) (49)

since M is nclati c within this region. There are, of course, other regions

of negative NI coriespondii,g to higher values of k v , hut for those values I

will be ;maller i, magnitutidr,. We can obtain the approximate value of I by

taking the t-I I 1it, in which case ;o - (E-1 0 )/i11 and 1:(1. (48) reduces to

I - J, (2k v I) (50)

Numerical calculat ions using the theoretical distributions of Jasperse l indicate

that q. (50) is in excellent estimate for I in the low altitude regions of

our interest For illustration purpose, let us consider tht n=4 mode. If we

take B O..SC, IIbe value of , /e given by FEq. (41) 1with 2a"1--] then
0)p



corresponds to the electron density at an altitudc i 3 k,. From FEq. (50),

frkv/ = 7..Tearemn sevnbte =t 7.owNerlical erluatio )maxjlj = max(-J 8)--0.23, corresponding to kv/Q = 7.1. Numerical evaluation

of Eq. (46) for n=4, using actual G (E), yields max II-0. 18, which is obtained
for kAvo/s = 7. 1. The agreement is even better at lower altitudes whecre 6 o(E )

oh
is narrower.

In so far as the stabilizing term in Eq. (44) due to Finite-b effect can

be neglected, the collisionless growth rate of the electrn cyclotron insta-

bility is large compared to that of the upper hybrid inst~bility. In the
1/2

former case, growth rate is proportional to c while in the latter case it

is proportional to o, where u = nh/no..I. In Table 2 we present maximum

collisionless growth rate (without the finite-b effect), and collisional

damping rate as functions of altitude. The ailt itude is (.4 term i ned from the

value of o pe/S2, which in turn is de erlininl hy tihe cyclotion harmonic n

according to Eq. (41).

As the altitude increases, the finite-h stabiliKing (ffect becomes

increasingly important. This is due to the fact the electron temperature as

well as k increase with attitude. For n=4 mode, if we t;:kc into account the
m -1

finite-b effect tile reduced growth rate Ylit i s found to be '10 soi Above

this altitude, the stabilizing term dominates and so the todes are stabl e.

4.4 SUMMARY ANDI) DISCUSSION

We have studied the electrostatic instabili ii es associated with tihe F

region (below 170 kmi photoelectron distribution functions in the presence

of electron-neutral collisions. We find that at low altitude (at or below

130 kin) waves at electron cyclotron harmonics can become unstable with growth

rates larger than the coilisional damping rates. As altitude increases, this

electron cyclotron instability is extinguished by finite-b ( _r /nt.'-) effect.

At altitudes 130 km and above, on the other hand, upper hybrid instability

can be excited effectively. Our calculations based on the recent theoret ical

electron energy profiles of Jasperse' show that the upper hybrid instaibility

can operate at altitudes as low as 120 ki. This is an improvement ove r the

calculation of Bloomberg 4 , who found that the upper hybrid mode is stabilized

by collisions at or below 160 km. This disagreement with Bloomberg's calcu-

lation is primarily due to the fact that he considered tli collision fre-

qutilcteies of hc' -1 eV elect(- olls. Blit, ;Is we have shown) in tlil' text , the daillpill)

is a I NI .tll. , due it tle Maxwelliau elec trons with I tollj rat ill-e 0.01 e\ A l.!2) kill.

(:oilt ;ctqli n t I l ch . rel .volt col I iou ; Itr( ,iciiy i , ;ill olrd4i of iagn i oi de



smll I er thanl that of Bloomberg. Al so, oh r calculated co lii si on I css growth

rate:, arc somewhat larger thani thosc due to Bloomberg. Thii can be attrih utcd

to our Usc of the I(ectroin cnergy distribution of .Jasperse , which we helieve

I", IlloV ICCurale. At high altitudes (ab)ve 170 kill) elect roi-elect roIn cot li-

siojs, not taken into account in this work, are expected to eliminate the

upper hybrid instability.

Both of t hese instabi i t ies are dri yen by the suprathermal electrons with

energy peaked at 4 cV. Ttrbul cice arising from these instabilities is

expected to p|roduce tle observed 2 ,3 anomalous structure in the electron

distnribut ion funct ionl in thc 2-4 eV energy range. This will be the topic of

our tiuture work.
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P, V,

5 APPROXIMATE ANALYTIC SOLUTIONS FOR TIL! AIlROIKAL PIROTON AND

IYDROGEN FLUXIS AND REILATLI2) QUANTITIES

5.1 INTRODUCTION

The proton aurora results from the precipitation of energetic (-I to 100 keVJ

protons, with the peak of the energy spectrum lying below 10 keV, into the

auroral atmosphere. Spectroscopically, it is identified by the readily detect-

able Balmer series emissions (H 11 , and It The Balmer emissions are

radiated by the moving hydrogen atoms that are produced in the charge-Cxchliange

collisions of the protons with the atmospheric const ituents. The proton pre-

cipitation also results in the excitation of various initrogen and ox)gcn emis-

sions, such as A3914, X4709 N+ , and A5577 01.

Theoretical calculations of energy deposition function, ionization rate,

and X3914 N2/hn intensity ratio were initiated by Chamberlain 119611. Since
2i

then, Eather and his co-workers have improved upon Chamherlain's calculations

utilizing recent experimental and theoretical cross sections for all the energy

loss processes involved. A complete list of these works can be found in the

monograph by Vallance Jones [19741. These calculations, however, are semi-

empirical in nature, without the detailed knowledge of the energy distribution

and the pitch angle distribution of the precipitating protons as a function

of altitude. As Eather [1967] has pointed out both the energy spectrum and

the pitch angle distribution must be known for correct theoretical interpreta-

tion of the measured hydrogen line profiles.

In this paper, we calculate for the first time the energy and pitch angle

distribution of the auroral protons as a function of :altitude, applying, the

methods of linear transport theory. The proton precipitation problem is com-

plicated by the partial neutralization of the incident protons as a result of

the charge-exchange collisions. This leads to a coupled set of transport

equations - one for the proton flux, and the other for the neutral hydro.'en

atom flux. Another related complication is that the hydrogen atom resulting

from the charge-exchange collision can travel large distances acros-; the earth's

magnetic field lines before being converted back to a proton via charge-stripping

reaction. Davidson [19651 used a Monte Carlo technique to analyze this trans-

verse diffusion and found that, for 5 to 20 keV protons, for example, an

isotropic incident pitch angle distribution results in a spreading of the
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precipitation zone over an area as wide as bOO km. Consequently, the relevant

transport problem is, strictly speaking, a two-dimensional one. In the present

work, we ignore this transverse diffusion and obtain approximate analytic

solution; for the ,roton and the hydrogen fluxes in a plane-parallel geometry.

We also iresent an.ilytic expressions for energy deposition rate, and ionization

rate as , function of altitude. In Sec. , we calculate those quantities as

well as he densit of electrons, which result from ioni:ation and the strip-

ping of I atoms, f r an isotropic-Maxwellian incident proton flux, using the

pseudoparticle method of Jasperse and Strickland [19791.

5.2 CIIARACTERISTI " FEATURES OF PRECIPITATING PROTONS

Fast protons 'ntering the upper atmosphere undergo charge- xchane

collisions in whicL| the incident proton captures an electron and becores a

fast hydrogen atom. The H atom then undergoes stripping producing a proton and

an electron, thus 'ompleting the charge-changing cycle. These processes are:

+

4I A M I 4 M + e (2)

where M denotes any atmospheric constituent. The cross sections for these
procssc arequie lage :1-16 2

processes irc quie large (A 10cm ). As a consequence, an initially pure

H+ flux ;oon becoues a mixture of If+ and 11, and after only a few charge-

changiig cycles a, equilibrium flux is established in which the fractional

comiposit ion is a Ionction of energy. For auroral energies, this equilibriation

occurs well above the altitude where significant energy losses due to ioniza-

t ion and exci tat i ( n of the atmospheri c const ituent s can occur.

In addition I o processes (1) and (2), charge-changing processes such as

I1 1 NI + NI 4+ (3)

II N 11 4 ! + 2e - (4)

Call ok ctr'. liowevi r, the cross sect ions for these processes are very small and

the II content of the equi I i h ritm flux i S 1, in The aurora I energy range.

Because ionizatioi and e.xcitation proce.sses involving II have cross sections
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comparable to those of H+ and 11 processes, it is a good approximation to

neglect H in the proton auroral analysis.

5.3 BASIC EQUATIONS

For a single constituent atmosphere, the Ii nea r t ransp rt eq uat i oiis for

energetic protons and hydrogen atoms in a plane-parallel geometry are

L 2 + n(z){li(E) + oex (E) + oe (E) + olin M .p(Z'l'p)

27in(z) dE'dl, E,vi) O (z,'Ep u)

iJ k Pi P

+ 2rin(z) Jfdh'd" o01 (E',P * i,P) 41 (z,l:,) (5)

[ - + n(z) a (E) + uXCE) + (E) + o (E) (J (z,.

= 27rn(z) EfdE'diA' E o k -(l', -+ Ei) ( t(z,E',P)

k

+ 2pn(z) ZdE'dV o 1 0(E',V - E,j) D (,",i ) (6)j i

where O's are the particle fluxes, z is the altitude, p is cosine of the angle

between the particle velocity, and the positive z-axis, wli "h is parallel to

the geomagnetic field lines, and n(-) is the neutral density. Ik're,
k
a (E'Ij' - E,p) is the differential cross section per unit range (referred to

hereafter as just the differential cross section) for collision between the

precipitating particles and the neutral particles in which the neutral particle

makes a transition from the ground state to the final state j. The summation

index k labels elastic (e), excitation (ex), and ionizati )n (i)-type collis-
ksions. The corresponding total cross sections, denoted bh a (E), is related

to the differential cross sections by the formula

aIk ' = 27- :fdE'd o (E',I - E,p) (7)

33

i3



The subscripts P and 11 represent cross sections associated with the protons

and the hydrogen atoms respectively. In addition, a . is the differentialj
cross section for the charge-exclangc process (1) in which the ionized neutral

particle is left in the state j, and o0. is the equivalent differential crossJ
section for the stripping process (2). The corresponding total cross sections,

010 (E) and a 01(E), are related to the differential cross sections by the formulae

similar to Eq. (7).

In writing Eqs. (5) and (6) we have ignored any electric field that may

be present in the auroral atmosphere and assumed that the geomagnetic field is

uniform. Under these assumptions, protons lose energy only via collisions and

such collisions result in discrete energy losses.

5.4 FORWARD-SCATTLRING AND AVERAGE DISCRETE ENERGY-LOSS APPROXIMATIONS

The differential cross sections for all the processes involving protons

and t atoms are very strongly peaked in the forward direction for incident

energies above i few hundred eV [McNeal and Birely, 1973]. This suggests that

except toward the end of the precipitation one can make the forward scattering

approximation. We shall use this simplifying approximation with the under-

standing that our analysis will be only valid for E>Emin"

The toss function L(E), the energy loss per unit path length per molecule,

for a ,articular inelastic process (excitation, ionization, charge-exchange

or stripping) may simply be defined as the product of the average energy loss

W and the total cross section associated with the process. Edgar et al [1973]

have given the loss function for each inelastic process as a function for each

inelastic process ts a function of proton energy. Using the cross sections

given iv icNeal aid Birely [19731, and assuming equal average energy loss for

both protons and I1 atoms, we have calculated W as a function of E from the loss

funct ions of Edgar et al [1973] and find that it is a weak function of energy

in the airoral energy range and that it is almost the same for all the inelastic

processes. In the average discrete energy-loss approximation, W is taken to

he a constant (= 28 eV) and the same for all the inelastic processes.

With these approximations, we write

C 9, K-loe, ( ! , " • l,, - 2 ) 1 o . . ! ' t) ,(, -, (8)
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e(E',u - E,ii) - (2i1) , ( E') (1:li -: (L -+i) (9)

01 . E ,p - .Jjj = 2r -I E a0 F ) 6 E -E W j 6 )(2

J i

sect o ( " a ex (C ) , .J so ) - on. Su s ittn .qs (18) tlhr-(ugfl , ( 12) ino-,,s (lf

T -1

X2 o(E', ii ,IJ) (2En) + o.(IE:) , IY-(i+W)J IIV-'i (10)jJ .

1 J0

* J J

for both protons and Ht atoms. Hcere, X: oe~x(E) is the total excitation cross
j J

section e( , anso on. Substituting Eqs. (8) through (12) into Eqs. (5)

and (6) we obtain

+ = u (E) P (Z,E, )

n(z) [,Ox(.+W) + l(ZE+Wp) , (13)

H

and,

= _ n(z) [o H(E +WZl) +a'(+) 1 (,+~

+ n(z) o (E+W) D (z,E+W,p) (14)
p

Here we have defined

oF) _ e x(E) +i(E) + 10 (E)
p p p (5

and,

0 (CE) --_ ,( CE) u o~i U) + o01 (E) (lb)
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We not ic( ItK It I Ile (I., -,t I c scat IerilIIg tICVIII ( rto p ol t wa retit I t ofti(

forward-scatter i ng assumIption, and the coupling between the proton and It
10

atom fluxes arise due to the charge-changing processes represented by a and
01

5.5 SOLUTIONS FOR TttL FLUXES

Since the equilibriation of the incident proton flux occurs in the altitude

region where energy loss is unimportant due to very low atmospheric density,

we can analyze the precipitation problem in two stages. First, we neglect all

energy losses and show that equilibration due to charge-changing processes is

a direct consequence of LEqs. (13) and (14). We calculate the fractional com-

position-; of protons and H atoms in the equilibrium mixture. Then, we solve

the full transport equations for the fluxes taking the equilibrium fluxes as

the given boundar" values.

I I.1 I ui i briat i ng Fluxes

If w, neglect all energy losses, 1Eqs. (13) and (14) reduce to
[ . 10([, 01~

[U n(z) ;l(zI~i) n(z) 0 (E) 4)l(z,EP,) (17)

10
+ - n() K) ( ) 1 (z,p) = n(z) (1 (1:) 4(DPzE7v) (18)

Add i i' lh, IWO (ILUItiCoInS we obtain

I (z,Eu ) 4 l(zlu) = 0 (19)

whicl imp lies

J ( :,,K / + , , J , O(LdJ (20)

where ( y(L, p) (for --I p'0) is the proton flux incident (at z=-) on the atmo-

sphere. Lquation (2()) is Just a statement of the conservation of flux.

hiserthig Eq. (211) into either (179 or (18), and defining an equilibriation
depth r as

10 ii (21)

30_,_) l(



01

0

( e(zE), p },P) = 0 (E'1) I0 + 01 - exp( / C/11) (23)
0I + C; €

(DH (Te (z 'E ) ' -'P )  = Do0(13'p)  C;10 + (Ol exI)(.1 0/1 (23)

for -l<P<0, and zero otherwise, since 4l' (Ii,) = 0 for ()-it. 1, i.e., no part iclICs

are incident from below. According to Eqs. (22) and (23), the fluxes approach

their respective equilibrium values, given by

01
Do 4(E,p), for -l-u<0 , (21)

13 10+ a(

and,

10= o~(E, i.), for -l<)i<0 , (25)

G5 + 0

asymptotically.

For an isotropic incident proton flux, the hemispherically averaged values

of the equilibriating fluxes are

0 0
4(D(Te(z,E),E) 2TJ di (P (Te(z,E),Eo)/21

-10

Pq (E) 1 ( i T (z,E)] (26)
I 01 2

and,

i (Te (Z,E),E) 2- 2 dI ( 1 (e(Z,E),E,p)/2z

= Hn + T2 T e (Z,I;)) 
(27)

Here,
0

D q(E) f dvi p( , (28)
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p0 q_ df , (29)

and, ,(x) is the second exponential integral function. In the upper atmo-

sphere, the most effective charge-changing process are

+ + 10
11 (4 0)- [

+. 01
!i + 0 + H + 0 + (01

due to large abundance of oxygen atoms. We have calculated values of 4p and 4tl

as a function of altitude for an isotropic-Maxwellian incident proton flux,
1.0.,

1 0 L~i)= 2 ~1i.))l exp(-I:/l. 0 for -1-p<0 ,(30)

where QS is the total energy flux in the downward direction and 1 is the mean

proton energy, usilg o 0 (E) and 001 (E) of McNeal and Birely [1973] and using

a model atmosphere [Jacchia, 1977; 1000*K]. We find that for E = 8 keV, for0

example, the fluxe:; attain their equilibrium values at approximately 290 kin,

i.e., 7Z V 290 ki.

In the follow;ng precipitation analysis, we shall take Z=Zeq as the
ary, and solv, E(qs. (13) and (14) wiet Oq and eq ,

bound, given by Eqs. (24)

-ind (2') rcspectivi ly, as the fluxes incident on the boundary.

5.5.2 Precipitat iig Fluxes

rrrIaf1,forming AIs. (13) and (14) into equations in terms of the 'optical'

depth , lher,

z eq

(z,Il) 1)(1:) J n(z') dz , (31)
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we obtain

(~~~~~~~±~~ + F p t z,1) 13,) - (E ) (i(,I W) ,: I+W, 11)

(LW) ~ rzE+W),E+W' 1) ,(i2)

G p(E) Ii

and,

(i. -~ - 4,,(t(z,E),E,p) 'D H(EW (-Cz E+W),L.-W,' 1)o(E) 1

0to (E+W)

- ex e - x I
Here, we have introduced ap a + OP $ 0 + (-H for brevity of notations,

and assumed a p(E) = a 11(E), which is a fairly good approximation over the

auroral energy range.

The formal solutions of Eqs. (32) and (33) are

4 ~~ ( 4E~) eq (E. i) exp(r/ij)

01)(E+W) L dt D(,,=p ep(-)p
a (E) dtp

a 01(E)_ t (D H(bI~tL+WP) vxpf(-r-t)/Ol ,(34)

and

(TEp 0 eq (E ii) ex(/J

SH (E+IV) IT dt
(D(E (btEWji x[(-)

10 0

01 (E+W) Tdt 4 (b t ,E+W,li) exp [(Tr-t)/14 (35)
o(E) f ' P
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for -l-w<O. Here b (F:) 1(L+W)/op(E). Adding Eqs. (34) and (35) we obtain

+ lp(I,1,l) + l ,I-, ) -- 0(1,'lj) exp(/li)

-it f W V H % I

Xex) [0-t)/0l (36)

under the assumption o =0 In obtaining Eq. (36) we have used Eqs. (24) and

(25). This equation for the combined flux can be solved by iteration procedure,

which is equivalent to the multiple-scattering method used by Jasperse and

Strickland 119791 in solving the auroral electron precipitation problem, and

the complete solution is

p(r ,E,u) + * 1 (rlO) = IO(E,ip) exp(T/W) + bn] (l:)

x )(WP) 1H(T/,E) - 11 (0,,E) exp(rh/)] , (37)

for -l-,-0, and zero otherwise. In the above equation,

HI X E) --a,,(lI) c x , b x )  ,(38)

and the higher ord,r I1 functions can be obtained from the recursion relation

CpI-x) II 1+ (XE) - H n+1(, )

- f eXl)(-x') i1j1 it X"l+W) - If (0,F+4) cxp(b)tx') (

so th:1t

a ,C e.l(1 )  a22"l exp(1) X) , (40I)

(_ x[(1) i) a ').R v x22'(II x)
.;2 3~~ 1 ex 3 1  1

"I ;IIX; 1) X 4 ;Ii Ii ca ( X 1 ( 1 )X )

40
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etc. In the ahbove formuIae wc havc iIIt oduced th t' ol Iowi ig tef oi I st i ,

mn mn(E) (p(E+m ))/op+(n- )W)

a =a (E)=a (E) z [1 - b (F.:] - 1mn mn mn t 13

That Eq. (37) solves (3()) exactly can be vcri fied by di rect suhst iti! ii)[ -111d

using the recursion relation (39).

Substituting (ll from Eq. (37) into liq. (3 1) and do ing I ntera t i,,I,, wc

obtain

"e= ((E, i) exp(t/p)

O+oo

+ {1)E+W) (OIi.(/]

o(L+W) -i O (l +n. ,l(.[i .. -f{O l ' ,,;}

SexI)t(T-t)/P] 1.)

In doing the integrations we have used the recursion relat ion (39) and the

definitions (42) and (43).

We now solve Eq. (44) by iteration, where the :troth order iterate is

D()-,w)= (PL Ej)CXI)(T/1J) +i(+J~ 4 (~Wi
p p 0}p (F+W}

x n (E) [n (T/11,1) - 1l (0,1:) -Xp( -/1j)] (,1)

After successive iteration, the resulting solution can be Vxpressed in a closed

form as:
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;0,,, ) ) (iL+) +C M n (n+I)W) l) )

IOW 0)I 0I (L + (n +1 )W)
.1 ex(-/i + (+n+ 1)W) Z (l/+m , ijj

p m=+ 1

T Fl l (i){llm(r/p,L)-ll (O, ) exp(T/IJ) ] , (46)

,trc ( is givwn Ib IK . (iS), and

01..-.,O(l.+_il__ (E+2W) -oO (12W) 0o (E+nW) -o (L+nW)j

" L ()(1+2W) L O (_.nW)

(47)

so that

Ol
(I: +W -, (1I+W)

I (I t li+W)P

2o 0- (+2W) , etc.

11 (E+W) G (1:+2W)

lF(uations (37), (4') and (47) constitute the complete solution for the preci-

pitatip,, proton an( hydrogen fluxes subject to the approximations that were made

in the course of t0 c ;nalysis.

A few comment- about the solutions are in order. The linear dependence

of the fltuxc:s at a: I altitudes on the incident flux is evident. The solutions

yield no backscatt, red flux, i.e., P=o for 0-p<l. The reason for this is that

in the forward-scal tering approximation elastic scattering terms drop out and

no particles are s(;at t circ into the backward direction. Each factor in (R) isn
a very small quantity (,0.0()) over the auroral energy range, so that the sum

in Eq. (46) conver, es est remely rapidly. For practical calculat ions, only the

nI=l tcrm in the stu, should be quite sufficient.
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.,.6 11EMISPIIERLCALLY A\'lIZAtGHl FIAXS , LEI1WY DEPOSI TION RATE
AND IONIZATION RATEi:

In this sect ion we give nlyi exc-s1oils tot'ir aiou mU castit'aleI

quantities for ;tnIso o -ahI i ic i~t pirOton fluix ;1, oi vci in LH. 130)

5.6. 1 Ifeiisphil-cal ly Avuratged I

FP -I p t F 1i)L p(-/ I

(t)+ I

o (.;W)

+ f'S (R ) (:1
02 (it n ) n IW

ni I

*exp(-(E+nW)/L 0 ) b 11I 1(TIE) - 11 (0,Fi) [)I(

*+70 (E+ (n+l )WJ (F+mI)exp(- (l(.t)/jbi , U ) -II 01
o (E+ (n+I) W) (?I I mIII

and, according to Eq. (37),

(P , 3)~ [E exp(-E'/E 0  E 2 (T)

+ X(E+nW) cxp(-(E+nWl)/E 0 ) h I K1 E,) -11 (0,1:) 11)(A4
n= 1

Ip (T,l) ,(49)

where E 2(x) is the second exponential integral function d~rfined by
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k2 (X) f dt t exp(-xt) , (SO)

and, {0
1K ( ,1) f d l (x/ ,l) (51)

It can be easily verified that the K-functions are the same as the I-functions

with the exponential functions replaced by the E2-functions everywhere.

5.6.2 linergy Deposition Rate

The energy deiosit ion rate n(z), defined as the energy deposited per unit

volume per unit time by the precipitating fluxes, is given in plane-rarallel

geometry by

flI 1 7) 2nn(z) dl f d)i ji E o (E)- ( E,W) 4 (DI(TE,11) (52)

recognizing that Jk(z)/)z n(z)o )E())/aT. With the aid of Eq. (37) this
becomes

n(z) f dl F op(F) I! cxp(-1E/E 0 ) E(T)

I'F ii Ifn p

+ (li +1W) exp (-(IE+nW)/l 0 ) bn Ln(TF)-Hn(OI' 1 2(t) (53)

II
= I

where

I)

, (.,I!) d i H )--- 1 x/1 E) (54)

The rule for I (X,l ) is;: find 4i l(X,l')/;x and then replace the exponential

furction'; fy (he I, -fine t i ons everywhere. As discussed in the beginning of

section ".4, our ana ttic solutions for the fluxes, based on the forward-

ScattCr in1,, apirox ii;ation, ;ire en ly valid for l-li .. In doing the energy integral

in lq. (5.) from 1 i,*iw t, ,,, instcad (if from 0 to - which defines n , le lose

contribution to th integrai ;mour,t ing a tc.w percent for the auroral protons.
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5.6.3 Ionization Rate

An important quant it y de cr ib ing t he protoun-hIydvrogen energy deposit ion in

the auroral atmosphere is the ionization rate n (z), defined as the number of

electron-ion pairs created per unit volume per unit time. In proton aurcras,

in addition to the impact ionizations by fast protons and hydrogen atoms, an

electron-ion pair is created at the end of each chaire-chanig cycle.

In planc-parallel geometry, ni (z) can be calculatcd from

n z 27r n (z) f dl i~~ i F a (F)~ (E, w) 4t (T~l 1:P
fE - I

dE d1-0. +

min
(55)

where Ws(E) is the average energy expended in creating an clectron-ion pair due

to impact ionizations and charge-changing processes. Inserting Eq. (37) into

(55) we obtain

( = n(z) i s( a (E) [ exp(-F/l) 12 (r)

min

+ t(E+nW)exp(-(F+nW)/LO) b1 L (t'E)-{ (O)'E;'e(q)] (5(')

The underlying assumption ir, writing Lq. (55) is that the energy deposited by

the precipitating proton-hydrogen fluxes is entirely expended in producing

electron-ion pairs. This is a reasonable assumption for l! min  I keV, since

the energy loss due to excitation processes is comparatively small owing to

small cross sections.

We take for W s(E) the values calculated by Edgar et al [19731. Typical

values are 30, 27, 26, 27, 28 and 32 in eV for 1, 2, 5, 10, 20 and 50 keV proton

energies, respectively. Because of charge-exchange a great number of ions are

created at low energies leading to a dip in Ws() below 10 keV prcton cnergy.

We further point out that in evaluating the energy integrals in E~qs. (53)

and (56), the integrals may be truncated at some E max . When this is done the

infinite sums terminate at a maximum value N given by N = (E max-E min)/W.
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5.7 PS.IIsIGPAR'I ICL. MIlI'I,O)

li , t 'I I rmu -e cf scti ons S .6. 1 through 5.0.3, IV is 30 eV and the

incident auroral proton energies range from I to 60 keV. This means, the sums

in the formulae extend to as many as 2,000 tcrms representing as many as 2,000

scatterings before an energetic proton loses all its encrgy. Howcver, a goed

approximation to these large sums may be obtained by introducing the notion of

pseudoparticles i:,isperse and Strickland, 1979]. A pseudoparticle is a particle

which has a cross section WI/W times smaller than the rcal particle but has an

average energy los:. per inelastic collision P!/IV times greater, where W>W. In

describing the energy precipitation in terns of the psetvdoparticles, we simply

replace (3 by o and W by W everywhere in Eqs. (48) through (Sb), i.e.

o( .( . o (I') (W/W) C(0:) (57)

W W IV (W'/) IV (5)

Ie notice that under such transformations the energy loss function L(E) Wiro(E)

rema ir s 1ich,iged; but, the number of terms in the sums is reduced by the facter
tW/W\, i e. N*N(W,/Ii)

tsing the pseidoparticle method we have calculated the various cuantities

in sections 5.(.1 !hrough S.(.3. We have found that a converging answer can

be ol,t[ irrd %,ith a suprisingly small number of pseudoscatterings. For example,

for an i .)trrpic-Maxwellian incident proton flux with E° = 8 keV only 10 pseudo-
0

scatterings (i.e. '>-10) spanning the energy range from 1: . - 2.5 keV to

F-57.5 keV yield good answers.
Ilia X
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We change over to ;phcricl coordin:itcs in iclocity ;pace 11sinl.

vi = V COS", V1  u lsili), v dv. dv vdv sio. dI

V 1) : V i
oh i Oh Ol h . lh

vitI V 3 V V V IV

TIhen the express ion for Nh I)CCO1.Cs

2ve (w+i vh l fo I- (k vs i nO/u,,) ',Ii \ ' .II J- oh)]

N - dv v d sid ,l,
0l f I k cI -1 jk

0

foh 3 FI

-l f tLv V JAI
0

taking into account the identity XI 11 1. I.Ct us con|sidr the first iiitegral.

With the substitution

w.j+1\) d v ' LI X) - i+ iv -k vcos'-mn1 t

and using the addition theorem

Jo(a sin b) = *Fna/2j cxp(Ii'uh)

we can Carry out til' illteg rlIt ion with IL'eSpt'W to ). The Ie't t i

0l( sill AV
I -2i dv _11 dT i (a)+i v I I (A2

2 2 1/2

whereA [k ) 2+ (4k_/2)2) sin2Qi/2] Integrating 1)y parts with respect

to v we obtain

0
1 = 2i )dv F, (V) f dIT cosAv exp{(-i(w+iv1)1(A;,
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In the case k =0, we can use t he ident ity

cos 2k~)s ii 1 I ' J, (2 k V/s v xp (insni) (AM)

and integrate with respect to "t. The result is

J (2k vu
1 -2 f J dv F I (v ) L (ASJ

it=--- .. )

Using (Af.) in ( A I) ive get

.l,,c <'> +" J., (2ki v /h)

)x' IV) I - (_+ivil+ (AO)

Fo Io%% iii,-. the procedure leading lip to I: I .  ( A2), we ' get

I) - h - ' F f( drsin Av
Ih I v.. . f dv vA l cxp{-i(,,+iv JIT (A7)

oV

Writ in,, .in Av/A - I dv cosAv and pci-Forming the integrat ion with respect
0

tt) i usint. F(I. (At), w . ohtain

. . ..... =-- -:- dv v I: d " ,J (2kv '/'.) (AS)'~ ~~ ~ fo nb ... ,, 11-.2 lo

Fii i y, (Isifg

fX -1dx" l~ni ') .l(x)

WC 0I~tIl il

we obtain

I ri4 ** i d' f I v : oil (21 v./ ) U )
II k n /.... -j -I J I JIn - I l,.L (411 HI ... 1) [4-" 0
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1'AIAI I

Maximum collis ionless growth rate co lis i onil damping

rate wand oth or paranict ors o f thc uipper hyb r Id in stab i I it y

as a function of allitudc , for B 0..3;S(. ikcre, Kl.( k v/

- ~ ~ ~ ~ A o ,,.
='

and K jK (-k /k 1 e refer to the values for which maximum growth

rate i., obta iinied.

Altitude - I (s- I - I K K/(kmJ ue 1 s  
) 0 III } Yi ) K- K / I

120 3.22 2.08 x 10 1.s x 11 8.1o x 1 .1( x 10 8.8

130 3.68 2.35 x 107 7.53 x 10 4.02 x 1011 .( I.0, , x. I S

7 3
14 0 -1.3 2.72 x 107 4.26 x 10 2.21 x {02  .I'S x 10 J).S 21.1

7 -14 x ) x ()170 5.16 3.2 01 x 10 x 1 79 x W'  12.8 11.1
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TABLE 2

Maximum collisionless growth rate -ym' collisional

damping rate, and other parameters of the electron

cyclotron instability as a function of altitude,

for B = 0.35G.0

I L,
AI t itude I (s-M (1)

(ki) 'pe m ~m (l km

100 2 1.73 1.4I x 10 4.37 x J03  1.48 x 10 4.o

-110 3 2.83 4.32 x 103 1.2 x 103 7.28 x 10 3 .8

130 ,1 3.87 7.53 x it) 2.0 x 102 2.89 x 104  7.1
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